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Abstract

Dynamic necking bifurcation in rapidly extending cylindrical rods is investigated. It has been found that both short
wavelength and long wavelength perturbations are suppressed by inertia and an intermediate wavelength is favored.
The analysis predicts an increase in the number of necks and an increase in the bifurcation strain with increasing
extension rate, in agreement with experimental observations. In terms of the number of necks formed as a function of
extension rate, good agreement has been found between the experiments and the analysis. At any given aspect ratio, the
model also predicts that beyond a critical extension rate, the mode number of the dominant perturbation increases
rapidly and the perturbation begins to look more like a surface instability. This could lead to a fragmentation
mechanism at high extension speeds which is different from multiple necking. Currently no experimental results are
available to test this prediction. Numerical simulations have been conducted to simulate the fragmentation results,
using Gurson’s constitutive law along with a porous failure criterion. Good agreement between the experimental ob-
servations and the numerical results has been obtained for the fragmentation statistics. However, the numerical results
consistently overestimate the number of necks and the fracture strain, possibly due to uncertainty in the constitutive
data used, especially at large strains.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Grady and Benson (1983) conducted fragmentation studies on rapidly expanding ductile metal rings by
subjecting them to radial electromagnetic loading. The rings were made of either 1100-O aluminum or
OFHC copper. They observed multiple necking along the circumference of the ring. Some of these necks
arrested before fracture and the others led to fracture, resulting in a number of fragments. They repeated
these experiments at a variety of loading rates and observed the following trends. (i) The number of
fragments is an increasing function of the expansion speed. (i) The fracture strain is an increasing function
of the expansion speed. This can be interpreted as increased ductility at higher loading rates. Altynova et al.
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(1996) performed similar experiments and observed the same fragmentation behavior. They also performed
a one dimensional rigid-viscoplastic dynamic finite element analysis and suggested that the inertial effects
are responsible for the increased ductility at higher loading rates. Fyfe and Rajendran (1980) subjected thin
cylindrical specimens to radial loading and observed similar trends.

A number of analytical efforts have been made to model the increased ductility and the tendency to form
more fragments at higher loading rates. These models attempted to quantify the effect of inertia on necking
instabilities in uniformly deforming straight rods. The necking instability in rods under quasi-static uniaxial
loading has been studied by Miles (1971), Cheng et al. (1971), Hutchinson and Miles (1974) and Hill and
Hutchinson (1975). The general approach has been to use perturbation analysis in order to determine the
critical stress state at which a non-homogeneous, neck-like deformation field can exist. Hutchinson and
Miles (1974) showed that such a deformation field can exist at a critical stress, which is greater than the
stress at maximum load, and the lowest critical stress corresponds to the longest wavelength perturbation,
in other words, a single neck is formed at this critical stress. Shenoy and Freund (1999) generalized the
perturbation analysis of Hill and Hutchinson (1975) to study a rectangular block of material, dynamically
loaded in plane strain, using a hypoelastic constitutive relation. They examined the growth rate of neck-like
perturbations and found that short as well as long wavelength perturbations are suppressed and inter-
mediate wavelengths have the highest rate of growth. Their analysis captured the qualitative features of the
experimental observations such as the increasing number of necks and the increasing ductility with an
increase in extension rate. However, direct comparison with experiments could not be performed, as it was
a plane strain analysis.

In this paper, the perturbation analysis of Shenoy and Freund (1999) is adapted to an extending cylinder
in order to facilitate direct comparison with the experiments of Grady and Benson (1983). This work is a
generalization of the analysis of Hutchinson and Miles (1974) to include inertial effects. In earlier work,
Fyfe and Rajendran (1980) extended the analysis of Hutchinson and Neale (1977) to demonstrate the effect
of strain rate on ductility. Fressengeas and Molinari (1994) used a viscoplastic constitutive relation and
concluded that inertia suppresses long wavelength necking whereas viscosity diminishes short wavelength
necking patters. However, as demonstrated by Shenoy and Freund (1999), inertia alone can be shown to
suppress the growth of both short and long wavelength modes.

Numerical modeling of expanding rings was performed by Han and Tvergaard (1995), Pandolfi et al.
(1999) and most recently by Sorensen and Freund (2000). Sorensen and Freund (2000) conducted a plane
strain numerical investigation of the formation of multiple necks in a radially expanding ring and found
that long wavelength thickness imperfections lead to the appearance of a nearly periodic short wavelength
necking pattern. Plastic strain rate sensitivity was shown to have only a minor influence on the early stages
of development of unstable necking. In the current investigation, the expanding rings used by Grady and
Benson (1983) in their experiments are modeled as homogeneously deforming cylindrical rods, with a
constitutive law that includes ductile void growth. Statistics of numerical fragmentation simulations are
compared with those observed in the experiments.

The next two sections describe the homogeneous deformation of an expanding ring and a perturbation
analysis of such a deformation, respectively. Following a discussion of the results of the perturbation
analysis, a numerical study of the same problem is presented along with a comparison with the experi-
mental observations.

2. Homogeneous deformation of a cylindrical bar
In the following analysis, the expanding ring of the Grady and Benson (1983) experiment is idealized to

be a homogeneously deforming incompressible cylindrical bar of initial radius 4 and initial length 2L, as
shown in Fig. 1. The radius 4 is chosen such that the cross sectional area of the cylinder is equal to that of



P.R. Guduru, L.B. Freund | International Journal of Solids and Structures 39 (2002) 5615-5632 5617

Vo Vo
-« 4 Ri >
R N — -
- z >
< v >
«— L —»‘4— L —»

Fig. 1. Geometry of the extending cylinder.

the rings used in the experiments, which had square cross sections. The ends of the rod move in opposite
directions with a speed vy as shown. Denoting the reference coordinates of mass particles as (R, ©,Z) and
current coordinates as (r, 0, z), the deformation can be described as

r=J"R, z=)Z and 0=0 (1)
where
A=1 +U0t/L (2)

with ¢ representing time. Using Eqgs. (1) and (2), the velocity field corresponding to the homogeneous de-
formation state is

B Do [20) -3/2 700
0’772LR(1+LI) and vszZ (3)

The fields v,(R, Z,t) and v,(R, Z, t) are the radial and axial components of the velocity. The Cauchy stress
for this homogeneous deformation is

0 0 0 - 0 0
6=(0 0 0O|+]0 —p O (4)
0 0 ¢ 0 0 —p

where o is the axial stress due to strain history and p is the hydrostatic stress due to particle acceleration (see
Eq. (3)). Using the equation of motion in the radial direction and the condition that p =0 at R = 4, p can
be determined to be

2 2 _ p2
p=(2) @ rmir ®)
(1 4+ vot/L)

A similar expression has been derived for the plane strain case by Shenoy and Freund (1999), where
the denominator had a power 4 instead of 3 and a numerical factor of 1 instead of 3/8. In the above
equation, p is the mass density. Eq. (3) describes the deformation state and ¢ is not known because no
constitutive relation has been used yet. The stability of this deformation state is analyzed next. In other
words, if the velocity field given by Eq. (3) is slightly perturbed in a way that is consistent with the boundary
conditions, we examine if such a perturbation grows in time and, if it does, what is its rate of growth.

3. Linear perturbation analysis

The equations of motion in rate form in terms of the components of the first Piola—Kirchoff stress T are

TRr,R + TZr,Z + (TRr - T@o)/R = pi, (6)
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TRZ‘R + TZz‘Z + TRZ/R = pb; (7)

All derivatives with respect to @ are set to zero in writing these equations due to axial symmetry. The
boundary conditions are

v,(R, £L,t) = %u, (8)

Tr.(4,Z,1) = 0, Tro(4,Z,1) = 0, Ty (R, +L,t) = 0 (9)

which ensure constant mean strain rate, traction free lateral faces and shear stress free ends. In the above
equations, T can be expressed in terms of Cauchy stress and deformation quantities using

T=F'(6-Ds—W) (10)

where F is the deformation gradient, ¢ is the Jaumann rate of Cauchy stress, and D and W are the sym-
metric and antisymmetric parts of velocity gradient. The material is assumed to follow the hypoelastic
constitutive relation developed by Storen and Rice (1975), which in the present context becomes

&, = (h+ Dy + (h — hy)Dyg (11)
g9 = (h— h1)Dyr + (h + hi)Dyy (12)
&= 2hD.. 13)
6, = 2D, (14)

where prime denotes the deviatoric component. In writing Eqgs. (11)-(14), it was assumed that vy = 0, all
derivatives with respect to 0 are zero and D, + Dyy + D.. = 0. Here h and A, are, respectively, the tangent

modulus and the secant modulus of the graph of equivalent stress , /aj;07,/2 vs. equivalent strain y/2é;¢;;.

This graph reduces to the shear stress vs. shear strain curve in pure shear. It can be verified that the ho-
mogeneous solution given by Egs. (3)—(5) satisfies Egs. (6)—(14). In addition, ¢ at any time can be calculated
by integrating Eqgs. (11)—(14).

Introduce, at some time 7, a perturbation velocity field (v, v}, v!) such that vj, = 0 and v/ and v/ do not
depend on 0. Then, it can be seen that this perturbation velocity field, along with the corresponding per-
turbation stress field satisfies Eqs. (6)—(14), with Eq. (8) modified as

U(REL,t)=0 (15)
Dropping the prime for convenience, Egs. (6) and (7) and Egs. (9)—(15) are the governing equations for the
perturbation velocity field. The task is now reduced to analyzing the evolution of this field. Without loss of
generality, 7 can be set to zero so that F = 1. The reference and current configurations coincide with each
other and the distinction between (R, @, Z) and (r, 0,z) can be neglected. Note that Egs. (11)-(14) do not

determine the hydrostatic component of the stress rate. In order to eliminate it, Eq. (6) is differentiated with
respect to z and Eq. (7) with respect to r and the difference between them is formed. This results in

(T = To) o+ Toe + (B = Too) /17 = T = Ty fr + T /1P = p(b, — B2, (16)
Using Egs. (10)—(14) in the above equation gives
(h+6/2) 0=+ [ = pr+ (h+0/2)[1)0rsz = [P+ pr/r+ (h+0/2) /P00 + (1 — 2k + 0/2) 02,
Dot O+ 020 = (= 6/2)0 -y = 0/ 2y 5 (= 0/2)t, = p (b — )

(17)
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Since the material is incompressible, v, and v. can be written in terms of a potential ¢(r,z,1) as v, = —¢
and v. =1 (rg),. Defining o = (3/4)p(vo/L)?, Eq. (17) becomes

1

1 1 1
E(O— - 2h1)¢,rrrr - E (6 + 2h1)(p,zzzz - (3h - hl)qo,rrzz + ; (U - 2h1)¢‘rrr - ; (3]1 - hl)q)‘rzz

3 3h—hy 3
_?( 2h )q)rr < ) —oc)qo 23( 2h)

3 . . P, P
_M(G_zhl)(p:p<_(p~rr_q),zz_+2> (18)

r r

Assuming a separable solution of the form
@(r.z,1) = (r,2)T(1) (19)

results in an equation for ¥(r,z) as
1 1 1
(@ = 20)W =5 (0 + 20 oo = Bl = )Y e+~ (0 = 20y =~ (Bh = )Y

{p@z 2 5 (0 —2h >] v, + (3h h

N —

+ 92—a)zﬁzz+ [233 (6 —2h)) + p0*/r|y

- {%(a2h1)+p02/r2]¢0 (20)

where 0° :; is the separation constant. If 67 is real and positive, the perturbation field is unstable. The
function  is assumed to have the form

W (r,z) = g(r) cos(y2) (1)

where 7 is the axial wave number of the perturbation field. In order to satisfy the boundary condition Eq.
(15), y must have the values

nq
V:ﬂﬁ q:173757"' (22)

Using Eq. (21) in Eq. (20), the governing equation for g(r) is obtained as
w2, 23h— ) +p0* 371, 23h— )+ p0* 37,
S PN [ EI DR ) WM RS AR T

/2 —h r? ra/2 —h) A8
2 _ 2 y2 02_ né 244k
| PG zh) +p07 3 (00— ) 9o/ 24 )|, 23
r2(a/2 — h) r /2 —h

Assume a power law type uniaxial stress—strain relation, ¢ = k¢”", where k and n are material constants with
n denoting the strain hardening exponent. With such a relation, n = h/h;. By defining

b=[3—1/n+ 12N(v/v,)/(xq*n(ns)" )}/ (3s — 2/n)
= [(1/n+35/2) + 3(4N = 3)(vo/v,)*/ (wq*n(ns)" )]/ (1/n — 35/2)
in which s = ¢/3h, v, = \/k/p and N = (LO/v,)*, one can write Eq. (23) as
L*(g) +2by’L(g) + ¢'g =0 (24)

where the operator L is defined by L(g) = g" +g'/r — g/r*. Further, by setting p? = b — vb?> — ¢ and
p? = b+ Vb* — ¢, we can represent Eq. (24) as
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(L+7p)(L+7p3)g =0 (25)
The boundary conditions, Eq. (9), give

&)+ g (A (7~ 1/4)g(4) = 0 (26)
g///(A) +%gﬂ(’4) 4+ (Zbyz _ l/Az)g’(A) + [%4‘27? (b — O—/zh]_ hl) + o‘/yza—Ahl :|g(A) =0 (27)

Eq. (26) is obtained from the first of the Eq. (9). Eq. (27) is obtained by setting T}, ,(4,Z,1) = 0. An ex-
pression for Ty, is obtained using Eqgs. (10) and (7). Non-trivial solutions of Eq. (25) are sought subject to
constraints Eqs. (26) and (27). The solution to Eq. (25) has different forms depending on the complex
character of p} and p3. The relevant case here is the one when p? and p3 form a complex conjugate pair, in
which case Eq. (25) admits a solution of the form

g(r) = BJi(ypr) + BJ\(ypr) (28)

where the bar denotes complex conjugate. B is an arbitrary complex constant and p is a square root of
either p? or p3. J, is the Bessel function of order n. Subject to Eqgs. (26) and (27), the condition for the
existence of a non-trivial B is

Im{(1 = p*)2i(7pA)[(C1 — C2)i (ypA) + 7pA(Cs — p*)Jo(7pA4)]]} = 0 (29)
where Im stands for the imaginary part and
2
_ %(A/L)z (UO/UP) C = 2

n(ns)"' (3s/2 —1/n)’ 1T (Bns/2-1)

3(1—s/2) 12N (vy/1,)°
(3s/2=1/n) * m2g2n(ns)" " (3s/2 — 1/n)
In the above equations, N = (LO/ vo)2 can interpreted as the rate of growth of the perturbation relative to
the background homogeneous rate of stretch. NV is required to be very large compared to 1 for a pertur-

bation mode ¢ to result in multiple necking. For a given strain hardening exponent », stress s, aspect ratio
A/L, extension speed vy/v, and perturbation mode ¢, Eq. (29) determines the rate of growth N.

C; =

4. Results of perturbation analysis

The calculation procedure is described first. For a given hardening exponent », aspect ratio f = A/L,
stress s and extension rate vy/v,, Eq. (29) is solved for the growth rate NV as a function of the perturbation
mode ¢g. As ¢ is increased, initially N also increases, reaches a maximum and then begins to decrease. The
value of ¢g corresponding to the maximum value of N, say Ny, 1S termed ¢, and it represents the
dominant perturbation mode for the given value of s. However, we require Ny, > 1 for the perturbation
mode g, to turn in to a necking mode. Hence, a given mode ¢y« is supposed to satisfy a failure criterion
when Np.x = Nc, where Nc is an arbitrarily chosen large number. In the following analysis, N¢ is chosen to
be 200. If Npax < Ng, s is increased gradually until N,,,x = Nc. The corresponding s is the critical stress s, for
necking bifurcation. A plot of the perturbation growth rate N as a function of ¢ is shown in Fig. 2 for
N¢ = 200 and for different values of the normalized loading rate v,/v,. The corresponding values of critical
stress s, are also shown. This plot gives the number m of unstable necks at a given loading rate, as predicted
by the above analysis, to be m = (gmax — 1)/2. It also gives the critical stress s. at which multiple necking
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Fig. 2. Perturbation growth rate as a function of its mode number. Inertia suppresses the growth of low as well as high perturbation
modes and promotes intermediate modes.

begins. The fragmentation experiments of Grady and Benson (1983) and Altynova et al. (1996) showed that
the number of necks/fragments increases with an increase in extension rate and the fracture strain increases
with an increase in extension rate. The current analysis quantifies these observations, as illustrated in Fig. 3
and Fig. 4. Fig. 3 shows the number of necks as a function of extension rate, for different hardening ex-
ponents. The analysis predicts that the hardening exponent has little effect on the number of necks, within
the range of vy/v, plotted in Fig. 3. Fig. 4 shows an almost linear increase in critical strain, which is again
independent of the hardening exponent. One of the drawbacks of the analysis presented above is the ar-
bitrary choice of Nc. However, the number of necks is weakly dependent on Nc. An increase in Nc from 100
to 2000 results in an increase in the number of necks by a factor of 2-3, which was also a result obtained by
Shenoy and Freund (1999) for plane strain extension. Thus, a judicious choice of N could possibly be made

50
[ @
| u n=0.1 ® v
[ v n=0.2 @
a0 * n=0.3 (4
. O  n=04 ® 9 u
I n
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v,/v, extension rate

Fig. 3. Effect of extension speed on the dominant perturbation mode. Higher perturbation implies more necks. Strain hardening has no
significant effect on the dominant mode.
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Fig. 4. Effect of extension rate on the bifurcation stress or bifurcation strain (s = ¢/n). This figure explains the experimentally observed
increase in the ductility of metal rings at higher extension speeds. Strain hardening has so significant role.

from an appropriate comparison with experiments. The effect of decreasing the aspect ratio at a given
extension speed is to increase the necking mode number and to decrease the critical stress.

The functional relation between the necking mode, the aspect ratio, the critical growth rate and the
extension speed can be summarized through a universal relation shown in Fig. 5. If we fix the value of Nc,
the necking mode for all values of the aspect ratio, within the extension speed range shown, can be obtained
from a single curve in Fig. 5 which can be represented as

v 1/2
Gmax :Né/4ﬂl/2(_0) (30)

Up

Comparison of the perturbation analysis results with the experimental observations requires information
about the constitutive behavior of the material at the high strain rates. A typical strain rate in the ex-

0.25

-0.25

o5t e

L°g10(qmax N:M B1/2)

LI N L I I

- | 1 ]
1.25 > K )

Log,, (volvp)

Fig. 5. A universal law relates the dominant perturbation mode, N¢, aspect ratio and the extension speed. By choosing an appropriate
value for N¢, necking mode for all speeds and aspect ratios can be obtained from a single curve shown here.
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Fig. 6. Comparison between the model predictions and the experiment for three values of Nc for copper.

periments of Grady and Benson (1983) on aluminum and copper rings was around 10%/s. For these ma-
terials, this is also the strain rate around which there is a sharp increase in the flow stress. Thus, the ac-
curacy of the constitutive data available places a limitation on the comparison with the experimental
results. The aspect ratio f§ in these experiments is 0.0113. Fig. 6 compares the number of necks observed in
the fragmentation experiments of Grady and Benson (1983) on OFHC copper rings with the analysis
predictions, for three different choices of Nc. Constitutive parameters used are £ = 760 MPa and n = 0.49,
which were obtained by fitting the power law to the stress—strain data reported by Follansbee (1986) at a
strain rate of 1.2 x 10%/s. A value of 125-200 for Nc appears to fit the experiments well. Similar comparison
for 1100-O aluminum is shown in Fig. 7. Constitutive parameters used are &£ = 230 MPa and » = 0.33,
which were obtained from the data reported by Pao and Gilat (1989) at a strain rate of 10°/s. A choice of
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Fig. 7. Comparison between the model predictions and the experiment for three values of Nc for aluminum. For both copper and
aluminum, the values of N¢ for which good agreement was found, are approximately the same. This gives a predictive capability to the
perturbation analysis.
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Fig. 8. A comparison of the bifurcation strain as predicted by the model with the experimentally observed fracture strain for copper.

150-250 for N¢ appears to yield good agreement with the experimental results. It is significant that for two
different materials, tested at very different extension speeds, the value of Nc that makes the analysis pre-
dictions and the experimental observations agree is almost the same. This gives the above perturbation
analysis a predictive capability. By choosing N¢ to be 200 and given the aspect ratio, the universal relation
shown in Fig. 5 can predict the number of necks for any material, if the stress—strain relation for that
material is known. Further experimental results are awaited to test the validity of such predictions.

Figs. 8 and 9 show the comparison between the bifurcation strain from the analysis and the fracture
strain measured by Grady and Benson (1983) for copper and aluminum respectively, for three values of Nc.
Fracture strain, defined as the change in the total length of all fragments with respect to the initial ring
length, must overestimate the bifurcation strain. This is indeed the case for copper whereas the bifurcation
strain is slightly higher than fracture strain for aluminum. Such a discrepancy can be attributed to the
uncertainty in the constitutive data used in the analysis. However, it is noteworthy that the increase in the
bifurcation strain and the fracture strain are very similar to each other.

B 1100-0O Aluminum
L [ ] Grady & Benson
06k ———- - N.=150
£ | N_=200 _
g — — — — N =250 -
7]
e =T
5 B
3]
® 04= ===
£ = °®
c
S P
=
= L
<] L
s 0
! | TR | TR
00.5 1 1.5 2 25

v,/v, extension rate

Fig. 9. A comparison of the bifurcation strain as predicted by the model with the experimentally observed fracture strain for aluminum.
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Fig. 10. A dramatic increase in the dominant perturbation is observed beyond a critical extension rate, which is a strong function of the
aspect ratio and a weak function of hardening exponent.

A dramatically different behavior was observed for the number of necks and the bifurcation strain when
the extension speed vy is increased to values significantly higher than those in the experiments. Fig. 10 shows
the variation of the dominant perturbation mode number over a larger range of extension rate, for three
aspect ratios and two values of the hardening exponent. It can be seen that the earlier discussion on the
effect of aspect ratio and the hardening exponent on the mode number is valid for the normalized extension
rate below 1. The mode number is seen to increase rapidly beyond a critical extension speed and this critical
speed decreases as the aspect ratio increases, that is, as the bar becomes less slender. As the number of necks
increases rapidly, the stress is seen to saturate at the same value for all aspect ratios and this level is found
to be a decreasing function of the hardening exponent, as shown in Fig. 11. In order to understand this
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_ 3 — —mu— - n=0.1,8=0.04
P A ~ n=02,p=0.04
u)° a - - n=0.1,B=0.08
g 4__ n=0.2,5=0.08
et
m -
8 3 _— e ¥
:E -
=
o -
A |
| .
| ...,.,.,..,,‘../---
= P g
- P R SR R
0 2 | | |

v//v, extension rate

Fig. 11. At higher extension rates, critical stress corresponding to the dominant mode reaches a saturation value which is a strong
function of the hardening exponent and does not depend on the aspect ratio.
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Fig. 12. Transition of neck like perturbations into surface instabilities at high extension speeds. (a) Normalized radial and axial
perturbation velocities that represent necking deformation at vy/v, = 0.2. (b) The perturbation velocity components are localized to
near the surface at vy/v, = 5. This looks more like a surface perturbation than a necking mode.

behavior, it is instructive to examine the radial and axial velocity distribution corresponding to the domi-
nant perturbation. At low values of vy, Fig. 12a shows the variation of the amplitude of the radial and axial
velocity components of the dominant perturbation for vy/v, = 0.2, n = 0.2, b = 0.02 and N¢ = 200. Nor-
malization is done with respect to the amplitude of the radial velocity at the surface of the cylinder. To-
gether, they show that the perturbation corresponds to a necking deformation. However, when v,/v, is
increased to 5, the velocity components appear very different, as shown in Fig. 12b. At high extension
speeds, the dominant perturbation appears to be localized to a region near the free surface. The pertur-
bation looks like a surface instability, which would result in an undulating free surface; it does not look like
a necking instability that would lead to multiple necking. The perturbations shown in Fig. 12b are similar to
the surface instabilities in strained plastic solids which were studied by Hutchinson and Tvergaard (1980).
They investigated the conditions under which the surface perturbations of a strained power law hardening
plastic solid become unstable and they arrived at a critical strain condition involving the hardening ex-
ponent. In uniaxial tension, for » = 0.1, 0.2 and 0.3, the critical strain was 0.45, 0.56 and 0.66 respectively.
From the type of data shown in Fig. 11, the saturation strain values for the same values of n are 0.55, 0.62
and 0.66. The close agreement in the critical strains between the two analyses suggests that the dominant
perturbation at high extension speeds corresponds to a surface instability rather than a necking mode. By
subjecting aluminum bars to a bend test, Hutchinson and Tvergaard observed the growth of micro-surface
undulations into large ripples and they also found that micro-cracks developed along the troughs of these
ripples and grew into shear fractures. Thus, it may be speculated that, as the neck-like perturbations are
replaced by surface ripple-like perturbations beyond a critical extension speed, cracks could develop at the
bottom of such ripples, leading to a fragmentation mechanism that is entirely different from the multiple
necking mechanism. However, no experimental results are currently available to test the validity of this
hypothesis. In the Grady and Benson (1983) experiments, the aspect ratio was approximately 0.01 and
the highest value of v/v, achieved was about 2.4, which is far below the critical value, as can be seen from
Fig. 10.

5. Numerical analysis

By its very nature, perturbation analysis is concerned with the critical conditions for the onset of necking
instabilities. It does not say much about the post-bifurcation evolution of the instability and its progress



P.R. Guduru, L.B. Freund | International Journal of Solids and Structures 39 (2002) 5615-5632 5627

towards fragmentation. A numerical simulation of the Grady and Benson (1983) experiments has
been conducted using the finite element analysis program ABAQUS in order to understand the frag-
mentation characteristics. One half of the extending cylinder has been modeled, from Z =10 to Z = L.
The cylinder has been modeled with eight noded linear brick elements with reduced integration. The fi-
nite element discretization had 398 elements along the length and 60 elements within the cross-section.
At Z = 0, the cylinder was constrained in the axial direction and, at Z = L, the cylinder had an axial ve-
locity vy = mi, where 7 is the radial expansion speed in Grady and Benson (1983) experiment. The ini-
tial conditions were such that all points at a distance Z from the origin, had an axial velocity of
v9Z/L. To account for the Poisson contraction, all material points also had an initial radial velocity of
—vooR/L where v is the Poisson’s ratio. Following Sorensen and Freund (2000), the radius of the
bar was given a small geometric imperfection of the form R = A(1 — 2&cos(nZ/L)), in which the param-
eter ¢ controls the magnitude of the imperfection. Calculations were carried out for either £ =0 or
£=0.01.

The material was modeled as an elastic—porous plastic material, whose yield function depends on the
macroscopic Cauchy stress g;;, the matrix tensile flow stress o, and the current void volume fraction. The
yield function can be represented as (Gurson, 1977; Tvergaard and Needleman, 1984),

2

{0y, 0m.f) = 75 + 2f "1 cosh(3ou/20m) — (1 +(q1f")) = 0 (31)
where o, is the effective stress or Mises stress (3/2 S;; S,:,-)l/ ?. S, is the deviatoric part of o;; and oy is the
hydrostatic part of Cauchy stress, gy /3. This model exhibits dilatational plasticity behavior as a result of
the porosity. Tvergaard (1982) introduced the parameter ¢; with a value of 1.5 to obtain better agreement
between the predictions of this model and the numerical studies of a periodic array of voids. Following
Tvergaard and Needleman (1984), material failure by micro-void coalescence is modeled through the
function f* as follows.

=1 f<rk
[T=f+ K —S) f>)

where K = (1/q1 — f.)/(f¢ — f¢). Here f. is the value of the void volume fraction at which void coalescence
first occurs and ff is its value at final failure. As freaches fr, f* approaches 1/g;, at which stage the material
loses its stress carrying ability. Thus, a failure criterion is directly built into the constitutive equations. An
estimate of f, obtained from a simple model is 0.15 (Brown and Embury, 1973) and a numerical study by
Anderson (1977) suggests that fr is approximately 0.25.

The void volume fraction is supposed to increase through the growth of existing voids and nucleation of
new voids. The evolution law for void volume fraction is written as

(32)

f = fgrowth + fnucleation (33)
f:growth = (1 _f)gfk (34)
fi 1[& ’
y e — & .
o Jn 1t m n p
fnucleauon Snm exp 2 ( S, ) 8m (35)

Here, &) is the plastic strain rate derived from the yield function given in Eq. (31) and &, is the matrix
average plastic strain. It is related to the plastic train rate through

(1= f)oyh, = oy;él) (36)
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where g, is the tensile flow stress. The values of the constants appearing in these equations are ¢; = 1.5,
f»=001,5,=0.1,¢,=0.2, fo. = 0.15, fr = 0.25. The elastic modulus, the Poisson’s ratio and the density
of copper are 130 GPa, 0.3, 8930 kg/m?, respectively and those of aluminum are 75 GPa, 0.35 and 2700
kg/m?®. The plastic strain-stress data for copper was taken from Nemat-Nasser and Li (1998) and that
for aluminum was taken from Khan and Huang (1992).

6. Results of numerical analysis

Numerical simulations were conducted at a variety of extension speeds corresponding to radial ex-
pansion speeds of up to 250m/s. Some of the common features of the simulations are described using a
typical case of a copper rod with vy =400 m/s. As loading continues, when a critical strain is reached,
plastic deformation becomes unstable and a large number of diffuse necks appear spontaneously along the
length of the bar. This is seen in Figs. 13 and 14, which show the contour plots of the axial stress and the
axial plastic strain, respectively. The contour plots show level curves of these quantities in the plane of
average axial strain vs. the Z-coordinate. Since the overall strain increases with time, the abscissa can be
viewed as time. At an imposed strain of about 0.34, uniform deformation gives way to multiple necking and
further plastic deformation is mainly localized to the neck regions only. Porosity begins to develop inside
the necked regions and its evolution is shown in Fig. 15. During the neck development phase, the individual
necks interact with each other, leading to a situation where some of the necks cease to grow whereas the
others continue to grow until the porosity reaches fr, indicating fracture. In Fig. 15, six necks reach the
final fracture stage. The strain beyond which the number of fragments remains constant is taken as
the fracture strain. The development of porosity is accompanied by a complex evolution of stress state
because of the decreased stress carrying ability of the necked regions. This can be seen in Fig. 13 where the
axial stress drops rapidly as the bar undergoes fragmentation.
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Fig. 13. Contour plots of the time evolution of axial stress along the length of the cylinder. The abscissa, which is the overall strain,
represents the time. Spontaneous multiple necks appear all along the length of the cylinder at a critical strain.
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Fig. 14. Contour plots of the time evolution of axial plastic strain along the length of the cylinder. The abscissa, which is the overall
strain, represents the time. Spontaneous multiple necks appear all along the length of the cylinder at a critical strain. These necks
interact with each other and as a result, some of the necks arrest whereas the others continue to deform until fracture, leading to
fragmentation.
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Fig. 15. Evolution of void volume fraction f inside the necked regions. Though porosity develops in many necks, only some of them
reach the critical value to cause fracture.

Figs. 16-19 show the fragmentation results for copper and aluminum. A number of observations can
be made. The size of the imperfection has no significant influence on the number of necks, number of
fragments, bifurcation strain and the fracture strain. In fact, no imperfection is needed to simulate the
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Fig. 16. A comparison between the numerical results and the experimental observations for copper. The simulations consistently
overestimate the number of necks whereas excellent agreement is found for the number of fragments.
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Fig. 17. A comparison between the numerical results and the experimental observations for aluminum. The simulations consistently
overestimate the number of necks whereas good agreement is found for the number of fragments.

fragmentation behavior. The small round-off errors present in the nodal coordinates and the initial con-
ditions are sufficient to cause the instability when the critical conditions are reached. Figs. 16 and 17 show
that the numerical results consistently overestimate the number of necks as compared to the experimental
values. One of the reasons for this difference could be the way the necks were counted in the experiments.
Comparing Figs. 14 and 15, it can be seen that some of the necks arrest before developing any significant
plastic deformation and the diameter of these arrested necks would not be significantly less than its
neighborhood, thus contributing to their not being counted as arrested necks.

Very good agreement is seen between the numerical simulations and experimental results for the
number of fragments for both materials. The simulations slightly overestimate the number of fragments for
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Fig. 18. A comparison between the numerical results and the experimental observations for copper. The numerical fracture strains
closely approximate the experimental values.
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Fig. 19. A comparison between the numerical results and the experimental observations for aluminum. The numerical fracture strains
overestimate the experimental values. This is possibly due to the uncertainty in the stress—strain relation at large strains. The shape of
the stress—strain curve was seen to affect the bifurcation and fracture strains.

aluminum. The good agreement demonstrates that the numerical procedure used in this investigation can
be used to predict the number of fragments in other cases also. From Figs. 18 and 19, there appears to be
some discrepancy between the calculations and the experiments with respect to fracture strain. For copper,
though the agreement is reasonable, the rate of increase of the fracture strain with expansion speed is not
reproduced. However, the experimental fracture strain is consistently higher than the numerical bifurcation
strain, as it should be. However, this is not so in case of aluminum. The reason for this could be the un-
certainty in the constitutive data. As noted before, the bifurcation strain is a rather sensitive function of the
exact shape of the stress—strain curve. Small differences in the shape of the curve have been observed to
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cause significant changes in the bifurcation strain. We believe that accurate constitutive characterization of
the material up to large strains is necessary in order to accurately model the bifurcation and fracture strain.
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